

ANALYZER IMPORTANCE IN AMINE

Presenter:

Mr. Zaheer Juddy

OVERALL – AGRP, SRU & TGTU

aims

AMINE TREATING UNIT FLOW SCHEME

AMINE TREATING UNIT

aims

AMINE TREATING UNIT – 3D VIEW

Amine Absorber

Challenges

Presently the Lean Amine H2S is being analyzed through manual sampling and lab analysis.

The lab analysis of the lean amine showed very low H2S levels in the lean amine, often less than 200 mg/ liter of solvent.

It is not necessary to reach these levels of solvent regeneration to achieve the treated gas specification. These condition will lead to over consumption of steam in the re-boiler.

Amine Absorber

Challenges

-H2S content reported in the lean amine reported by analysis seems very low according to the operating conditions of regeneration section of the unit. Operations reported decreasing the steam flow rate to the regenerator leads to the an increase of the H2S content of the treated gas without a higher H2S loading in the lean amine. Hence there is a concern in the analysis method that is being practiced.

The lean amine H2S is checked to monitor and control the regeneration of the solvent (MDEA) used, therby maintaining the further absorption of the acid gases from the sour feed at an optimum level.

Amine Abserber

Challenges

-The frequency of analysis is once in a day. This method provides only single data to optimize the regeneration of the solvent which is being carried out continuously. Increasing the frequency of monitoring will give better control / optimization of the solvent regeneration process and the energy requirement for the same.

THE SEVEN SERVING POINTS OF PROCESS ANALYZER IN AMINE UNITS

1. Faster Measurement of Mercaptans in Treated Gas

Traditional GC is used for measuring Mercaptans along with H2S, COS. This obviously results in delayed response with due limitations of Technology

Power Optics defines to enhance the measurement capabilities. UV Technology is being used resulting response in seconds

<u>im</u>s

2. H2S Measurement in LEAN AMINE

Challenges

- Presently the Lean Amine H2S is being analyzed through manual sampling and lab analysis.
- The lab analysis of the lean amine showed very low H2S levels in the lean amine, often less than 200 mg/ liter of solvent.

NOTE: It is not necessary to reach these levels of solvent regeneration to achieve the treated gas specification. These condition will lead to over consumption of steam in the re-boiler.

The lean amine H2S is checked to monitor and control the regeneration of the solvent (MDEA) used, therby maintaining the further absorption of the acid gases from the sour feed at an optimum level.

Importance of ONLINE Analysis of H2S in Lean AMINE

- Provide Online H2S analyzer for Lean Amine to optimize steam consumption.
- An Online Analyzer with properly designed sampling system can contribute in Steam Consumption optimization and Energy Saving

H2S in LEAN AMINE

2. H2S Measurement in RICH AMINE

Where I am.... when sampling

AÎMS

PROBE MAINTENANCE MISTAKES

AIMS

PROBE MAINTENANCE MISTAKES

AÎMS'

PROBE MAINTENANCE MISTAKES

, AÎMS

Acid Mists, Salts and Corrosion

aims

Probe Side H2SO4 Formation

AÎMS

How to be Correct on Sample Probe

Proper Location for Tapping Point

Mistake No accessibility to Sample Probe **Correct Action**

aîms

Application based Selection

No Heating – Heating is Must!!!!

Example 1 - Sulphur recovery unit
1. Probe must be heated Probe, Heated above dew point Temperature of Sulphur 130 degC, but not more then 150 degC.

Proper Probe Heating with Jacketing

Steam Jacketing on Sampling Heated Probe Process Connection

Vibration and fluctuation in velocity

Wrong - Open tube probe was used as threaded type due to vibration and fluctuation in velocity

Correct - Welded support for probe extension has considered.

AÎMS

Ignorance of sample composition during selection of sample tube

Example – Sulphur Presence in Sample

Mistake - Adsorption of volatile sulphur components on the inner surface of sample tube Correct Action - Installed sulfinert treated sample tube for better performance

Correct type of Heated Sample line selection

- **Teflon:** Inert but temperature limitations (dewpoint temperature), permeation
- Stainless Steel: welded, seamless but cleanliness and adsorption problems with some applications
- Electro Polished: improved surface finish for improved absorption resistance
- ElectroPolished/Coated: for a product that is inert as Teflon but strong as steel

aims

How to be Correct on Sampling Handling System

Proper SHS design

- Analyzer Safety is must.
- SHS design must be done according to Analyzer engineering Design.
- Design knowing the process condition, normal and Abnormal operation.
- Selection of filters depending on Process Composition.
- Proper Fast Loop Design.

Potential Flaw	Root cause of Potential Flaw	Mitigation Action
Condensation staged in the HTL	Installation of HTL have the low spot	Re-Installed the HTL with proper slope from tapping point to analyzer
Before		After

Potential Flaw	Root cause of Potential Flaw	Mitigation Action
Probe extension detached from counter flange	Open tube probe was used as threaded type due to vibratio and fluctuation in velocity	Welded support for probe extension has considered.
Before		After

AIMF

Potential Flaw	Root cause of Pe	otential Flaw	Mitigation Action
Increased in Nozzle length	due to insufficient insertion of probe length in process line fresh sample is not extracted		Contactor to ensure the EPC document prior to job execution
Befor	P		After

Pot	ential Flaw	Root cause of Potential Flaw	Mitigation Action
Ana	lyzer failure	due to wrong installation of key components in analyzer by others	EPC to ensure that installation and commissioning shall be done in presence of OEM/Vendor supervision

Potential Flaw

Root cause of Potential Flaw

Mitigation Action

Excess heat dissipation causing over load on Air conditioner

Excess looping of HTL cable and improper insulation

Suggested EPC contractor to consider the installation guidelines from OEM/Vendor

Before

Potential FlawRoot cause of Potential FlawMitigation ActionOver looked on selection of
a - Flow meter compatible with process application
which causes leakage and damage to SHS.
b - Frequent Clogging of filters due to wrong selection.
c - Selection of right relief valve.a - Flow meter selection shall be based on the process data.
b - Filter shall be selected based on analyzer requirement.
c - Relief valve set point shall be selected with respect to
system design pressure.

Before

Flow meter shall be calibrated as per process data.
Filter selection as per analyzer requirement.
Relief valve selection and calibrated as per design pressure.

After

Potential Flaw	Root cause of Potential Flaw	Mitigation Action
Distance between takeoff point to analyzer	Increase in response time	Installation of analyzer as close as possible to takeoff point.

Potential Flaw	Root cause of Potential Flaw	Mitigation Action
Laying and Routine of sample lines	Due to excess length increase in a. Response time b. Power consumption c. Adequate space	Installation of sample line shall be done in presence of OEM/Vendor

Before

AÎMS

Potential Flaw	Root cause of Potential Flaw	Mitigation Action
Non accessibility at tapping point	Non availability of platform at tapping point	Based On OEM suggestion Customer has arranged permanent platforms for critical identified tapings
Before		After

AÎMS

Potential Flaw

Root cause of Potential Flaw

Mitigation Action

Probe fractured due to process stress/strain

Due to over look of wake frequency calculation

Probe selection shall be based on wake frequency calculation

Potential Flaw	Root cause of Potential Flaw	Mitigation Action
Sample Condensation in	Presence of excessive Heavier HC in	Install sample cooler at
the Analyzer during	the Sample.	the inlet of the analyzer
Abnormal Process		before 3 stage filter and
conditions		drain the HC condensate.

Before

Aims

After

Conclusions & Recommendations

(AÎMS)

